Resource of free step by step video how to guides to get you started with machine learning.
Monday, June 29, 2020
Set Distribution Networks: a Generative Model for Sets of Images (Paper Explained)
We've become very good at making generative models for images and classes of images, but not yet of sets of images, especially when the number of sets is unknown and can contain sets that have never been encountered during training. This paper builds a probabilistic framework and a practical implementation of a generative model for sets of images based on variational methods. OUTLINE: 0:00 - Intro & Overview 1:25 - Problem Statement 8:05 - Architecture Overview 20:05 - Probabilistic Model 33:50 - Likelihood Function 40:30 - Model Architectures 44:20 - Loss Function & Optimization 47:30 - Results 58:45 - Conclusion Paper: https://ift.tt/2Vt8tPQ Abstract: Images with shared characteristics naturally form sets. For example, in a face verification benchmark, images of the same identity form sets. For generative models, the standard way of dealing with sets is to represent each as a one hot vector, and learn a conditional generative model p(x|y). This representation assumes that the number of sets is limited and known, such that the distribution over sets reduces to a simple multinomial distribution. In contrast, we study a more generic problem where the number of sets is large and unknown. We introduce Set Distribution Networks (SDNs), a novel framework that learns to autoencode and freely generate sets. We achieve this by jointly learning a set encoder, set discriminator, set generator, and set prior. We show that SDNs are able to reconstruct image sets that preserve salient attributes of the inputs in our benchmark datasets, and are also able to generate novel objects/identities. We examine the sets generated by SDN with a pre-trained 3D reconstruction network and a face verification network, respectively, as a novel way to evaluate the quality of generated sets of images. Authors: Shuangfei Zhai, Walter Talbott, Miguel Angel Bautista, Carlos Guestrin, Josh M. Susskind Links: YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher Discord: https://ift.tt/3dJpBrR BitChute: https://ift.tt/38iX6OV Minds: https://ift.tt/37igBpB
Subscribe to:
Post Comments (Atom)
-
JavaやC++で作成された具体的なルールに従って動く従来のプログラムと違い、機械学習はデータからルール自体を推測するシステムです。機械学習は具体的にどのようなコードで構成されているでしょうか? 機械学習ゼロからヒーローへの第一部ではそのような疑問に応えるため、ガイドのチャー...
-
Using GPUs in TensorFlow, TensorBoard in notebooks, finding new datasets, & more! (#AskTensorFlow) [Collection] In a special live ep...
-
#minecraft #neuralnetwork #backpropagation I built an analog neural network in vanilla Minecraft without any mods or command blocks. The n...
-
Using More Data - Deep Learning with Neural Networks and TensorFlow part 8 [Collection] Welcome to part eight of the Deep Learning with ...
-
Linear Algebra Tutorial on the Determinant of a Matrix 🤖Welcome to our Linear Algebra for AI tutorial! This tutorial is designed for both...
-
STUMPY is a robust and scalable Python library for computing a matrix profile, which can create valuable insights about our time series. STU...
-
❤️ Check out Fully Connected by Weights & Biases: https://wandb.me/papers 📝 The paper "Alias-Free GAN" is available here: h...
-
Why are humans so good at video games? Maybe it's because a lot of games are designed with humans in mind. What happens if we change t...
-
Visual scenes are often comprised of sets of independent objects. Yet, current vision models make no assumptions about the nature of the p...
-
#ai #attention #transformer #deeplearning Transformers are famous for two things: Their superior performance and their insane requirements...
No comments:
Post a Comment