Resource of free step by step video how to guides to get you started with machine learning.
Saturday, June 27, 2020
Direct Feedback Alignment Scales to Modern Deep Learning Tasks and Architectures (Paper Explained)
Backpropagation is one of the central components of modern deep learning. However, it's not biologically plausible, which limits the applicability of deep learning to understand how the human brain works. Direct Feedback Alignment is a biologically plausible alternative and this paper shows that, contrary to previous research, it can be successfully applied to modern deep architectures and solve challenging tasks. OUTLINE: 0:00 - Intro & Overview 1:40 - The Problem with Backpropagation 10:25 - Direct Feedback Alignment 21:00 - My Intuition why DFA works 31:20 - Experiments Paper: https://ift.tt/3873KZ7 Code: https://ift.tt/2VoGOzI Referenced Paper by Arild Nøkland: https://ift.tt/2cPIbzi Abstract: Despite being the workhorse of deep learning, the backpropagation algorithm is no panacea. It enforces sequential layer updates, thus preventing efficient parallelization of the training process. Furthermore, its biological plausibility is being challenged. Alternative schemes have been devised; yet, under the constraint of synaptic asymmetry, none have scaled to modern deep learning tasks and architectures. Here, we challenge this perspective, and study the applicability of Direct Feedback Alignment to neural view synthesis, recommender systems, geometric learning, and natural language processing. In contrast with previous studies limited to computer vision tasks, our findings show that it successfully trains a large range of state-of-the-art deep learning architectures, with performance close to fine-tuned backpropagation. At variance with common beliefs, our work supports that challenging tasks can be tackled in the absence of weight transport. Authors: Julien Launay, Iacopo Poli, François Boniface, Florent Krzakala Links: YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher Discord: https://ift.tt/3dJpBrR BitChute: https://ift.tt/38iX6OV Minds: https://ift.tt/37igBpB
Subscribe to:
Post Comments (Atom)
-
JavaやC++で作成された具体的なルールに従って動く従来のプログラムと違い、機械学習はデータからルール自体を推測するシステムです。機械学習は具体的にどのようなコードで構成されているでしょうか? 機械学習ゼロからヒーローへの第一部ではそのような疑問に応えるため、ガイドのチャー...
-
Using GPUs in TensorFlow, TensorBoard in notebooks, finding new datasets, & more! (#AskTensorFlow) [Collection] In a special live ep...
-
#minecraft #neuralnetwork #backpropagation I built an analog neural network in vanilla Minecraft without any mods or command blocks. The n...
-
Using More Data - Deep Learning with Neural Networks and TensorFlow part 8 [Collection] Welcome to part eight of the Deep Learning with ...
-
Linear Algebra Tutorial on the Determinant of a Matrix 🤖Welcome to our Linear Algebra for AI tutorial! This tutorial is designed for both...
-
STUMPY is a robust and scalable Python library for computing a matrix profile, which can create valuable insights about our time series. STU...
-
❤️ Check out Fully Connected by Weights & Biases: https://wandb.me/papers 📝 The paper "Alias-Free GAN" is available here: h...
-
Why are humans so good at video games? Maybe it's because a lot of games are designed with humans in mind. What happens if we change t...
-
Visual scenes are often comprised of sets of independent objects. Yet, current vision models make no assumptions about the nature of the p...
-
#ai #attention #transformer #deeplearning Transformers are famous for two things: Their superior performance and their insane requirements...
No comments:
Post a Comment