Resource of free step by step video how to guides to get you started with machine learning.
Wednesday, June 3, 2020
Learning To Classify Images Without Labels (Paper Explained)
How do you learn labels without labels? How do you classify images when you don't know what to classify them into? This paper investigates a new combination of representation learning, clustering, and self-labeling in order to group visually similar images together - and achieves surprisingly high accuracy on benchmark datasets. OUTLINE: 0:00 - Intro & High-level Overview 2:15 - Problem Statement 4:50 - Why naive Clustering does not work 9:25 - Representation Learning 13:40 - Nearest-neighbor-based Clustering 28:00 - Self-Labeling 32:10 - Experiments 38:20 - ImageNet Experiments 41:00 - Overclustering Paper: https://ift.tt/3eQqHCd Code: https://ift.tt/2MpCJWP Abstract: Is it possible to automatically classify images without the use of ground-truth annotations? Or when even the classes themselves, are not a priori known? These remain important, and open questions in computer vision. Several approaches have tried to tackle this problem in an end-to-end fashion. In this paper, we deviate from recent works, and advocate a two-step approach where feature learning and clustering are decoupled. First, a self-supervised task from representation learning is employed to obtain semantically meaningful features. Second, we use the obtained features as a prior in a learnable clustering approach. In doing so, we remove the ability for cluster learning to depend on low-level features, which is present in current end-to-end learning approaches. Experimental evaluation shows that we outperform state-of-the-art methods by huge margins, in particular +26.9% on CIFAR10, +21.5% on CIFAR100-20 and +11.7% on STL10 in terms of classification accuracy. Furthermore, results on ImageNet show that our approach is the first to scale well up to 200 randomly selected classes, obtaining 69.3% top-1 and 85.5% top-5 accuracy, and marking a difference of less than 7.5% with fully-supervised methods. Finally, we applied our approach to all 1000 classes on ImageNet, and found the results to be very encouraging. The code will be made publicly available. Authors: Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, Luc Van Gool Links: YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher BitChute: https://ift.tt/38iX6OV Minds: https://ift.tt/37igBpB
Subscribe to:
Post Comments (Atom)
-
Using GPUs in TensorFlow, TensorBoard in notebooks, finding new datasets, & more! (#AskTensorFlow) [Collection] In a special live ep...
-
JavaやC++で作成された具体的なルールに従って動く従来のプログラムと違い、機械学習はデータからルール自体を推測するシステムです。機械学習は具体的にどのようなコードで構成されているでしょうか? 機械学習ゼロからヒーローへの第一部ではそのような疑問に応えるため、ガイドのチャー...
-
#deeplearning #noether #symmetries This video includes an interview with first author Ferran Alet! Encoding inductive biases has been a lo...
-
#ai #attention #transformer #deeplearning Transformers are famous for two things: Their superior performance and their insane requirements...
-
Machine Learning in Python using Visual Studio | Getting Started Python is a popular programming language. It was created by Guido van Ross...
-
The video provides an overview of the use of AI and machine learning in education, specifically in the context of building an AI tool for ma...
-
STUMPY is a robust and scalable Python library for computing a matrix profile, which can create valuable insights about our time series. STU...
-
K Nearest Neighbors Application - Practical Machine Learning Tutorial with Python p.14 [Collection] In the last part we introduced Class...
-
Linear Algebra Tutorial on the Determinant of a Matrix 🤖Welcome to our Linear Algebra for AI tutorial! This tutorial is designed for both...
-
📺For more content like this, follow me on: 🔗YouTube: https://rb.gy/x3zdss 🔗Instagram: https://rb.gy/2exe75 🔗Linkedin: https://rb.gy/iuhd...
No comments:
Post a Comment