Resource of free step by step video how to guides to get you started with machine learning.
Monday, June 1, 2020
DeepMind x UCL | Deep Learning Lectures | 5/12 | Optimization for Machine Learning
Optimization methods are the engines underlying neural networks that enable them to learn from data. In this lecture, DeepMind research scientist James Martens covers the fundamentals of gradient-based optimization methods, and their application to training neural networks. Major topics include gradient descent, momentum methods, 2nd-order methods, and stochastic methods. James analyzes these methods through the interpretive framework of local 2nd-order approximations. Speaker Bio: James Martens is a Research Scientist at DeepMind working on the fundamentals of deep learning including optimization, initialization, and regularization. Before that he received his BMath from the University of Waterloo, and did his Masters and PhD at University of Toronto, coadvised by Geoff Hinton and Rich Zemel. During his PhD he helped revive interest in deep neural network training by showing how deep networks could be effectively trained using pure optimization methods (which has now become the standard approach). About the lecture series: The Deep Learning Lecture Series is a collaboration between DeepMind and the UCL Centre for Artificial Intelligence. Over the past decade, Deep Learning has evolved as the leading artificial intelligence paradigm providing us with the ability to learn complex functions from raw data at unprecedented accuracy and scale. Deep Learning has been applied to problems in object recognition, speech recognition, speech synthesis, forecasting, scientific computing, control and many more. The resulting applications are touching all of our lives in areas such as healthcare and medical research, human-computer interaction, communication, transport, conservation, manufacturing and many other fields of human endeavour. In recognition of this huge impact, the 2019 Turing Award, the highest honour in computing, was awarded to pioneers of Deep Learning. In this lecture series, research scientists from leading AI research lab, DeepMind, deliver 12 lectures on an exciting selection of topics in Deep Learning, ranging from the fundamentals of training neural networks via advanced ideas around memory, attention, and generative modelling to the important topic of responsible innovation. Find out more about how DeepMind increases access to science here: https://ift.tt/3dnjF7D
Subscribe to:
Post Comments (Atom)
-
JavaやC++で作成された具体的なルールに従って動く従来のプログラムと違い、機械学習はデータからルール自体を推測するシステムです。機械学習は具体的にどのようなコードで構成されているでしょうか? 機械学習ゼロからヒーローへの第一部ではそのような疑問に応えるため、ガイドのチャー...
-
Using GPUs in TensorFlow, TensorBoard in notebooks, finding new datasets, & more! (#AskTensorFlow) [Collection] In a special live ep...
-
#minecraft #neuralnetwork #backpropagation I built an analog neural network in vanilla Minecraft without any mods or command blocks. The n...
-
Using More Data - Deep Learning with Neural Networks and TensorFlow part 8 [Collection] Welcome to part eight of the Deep Learning with ...
-
Linear Algebra Tutorial on the Determinant of a Matrix 🤖Welcome to our Linear Algebra for AI tutorial! This tutorial is designed for both...
-
STUMPY is a robust and scalable Python library for computing a matrix profile, which can create valuable insights about our time series. STU...
-
❤️ Check out Fully Connected by Weights & Biases: https://wandb.me/papers 📝 The paper "Alias-Free GAN" is available here: h...
-
Why are humans so good at video games? Maybe it's because a lot of games are designed with humans in mind. What happens if we change t...
-
Visual scenes are often comprised of sets of independent objects. Yet, current vision models make no assumptions about the nature of the p...
-
#ai #attention #transformer #deeplearning Transformers are famous for two things: Their superior performance and their insane requirements...
No comments:
Post a Comment