Resource of free step by step video how to guides to get you started with machine learning.
Monday, June 22, 2020
DeepMind x UCL | Deep Learning Lectures | 9/12 | Generative Adversarial Networks
Generative adversarial networks (GANs), first proposed by Ian Goodfellow et al. in 2014, have emerged as one of the most promising approaches to generative modeling, particularly for image synthesis. In their most basic form, they consist of two "competing" networks: a generator which tries to produce data resembling a given data distribution (e.g., images), and a discriminator which predicts whether its inputs come from the real data distribution or from the generator, guiding the generator to produce increasingly realistic samples as it learns to "fool" the discriminator more effectively. This lecture discusses the theory behind these models, the difficulties involved in optimising them, and theoretical and empirical improvements to the basic framework. It also discusses state-of-the-art applications of this framework to other problem formulations (e.g., CycleGAN), domains (e.g., video and speech synthesis), and their use for representation learning (e.g., VAE-GAN hybrids, bidirectional GAN). Note: this lecture was originally advertised as number 11 in the series. Download the slides here: https://ift.tt/3828cIV Find out more about how DeepMind increases access to science here: https://ift.tt/3dnjF7D Speaker Bios: Jeff Donahue is a research scientist at DeepMind on the Deep Learning team, currently focusing on adversarial generative models and unsupervised representation learning. He has worked on the BigGAN, BigBiGAN, DVD-GAN, and GAN-TTS projects. He completed his Ph.D. at UC Berkeley, focusing on visual representation learning, with projects including DeCAF, R-CNN, and LRCN, some of the earliest applications of transferring deep visual representations to traditional computer vision tasks such as object detection and image captioning. While at Berkeley he also co-led development of the Caffe deep learning framework, which was awarded with the Mark Everingham Prize in 2017 for contributions to the computer vision community. Mihaela Rosca is a Research Engineer at DeepMind and PhD student at UCL, focusing on generative models research and probabilistic modelling, from variational inference to generative adversarial networks and reinforcement learning. Prior to joining DeepMind, she worked for Google on using deep learning to solve natural language processing tasks. She has an MEng in Computing from Imperial College London. About the lecture series: The Deep Learning Lecture Series is a collaboration between DeepMind and the UCL Centre for Artificial Intelligence. Over the past decade, Deep Learning has evolved as the leading artificial intelligence paradigm providing us with the ability to learn complex functions from raw data at unprecedented accuracy and scale. Deep Learning has been applied to problems in object recognition, speech recognition, speech synthesis, forecasting, scientific computing, control and many more. The resulting applications are touching all of our lives in areas such as healthcare and medical research, human-computer interaction, communication, transport, conservation, manufacturing and many other fields of human endeavour. In recognition of this huge impact, the 2019 Turing Award, the highest honour in computing, was awarded to pioneers of Deep Learning. In this lecture series, research scientists from leading AI research lab, DeepMind, deliver 12 lectures on an exciting selection of topics in Deep Learning, ranging from the fundamentals of training neural networks via advanced ideas around memory, attention, and generative modelling to the important topic of responsible innovation.
Subscribe to:
Post Comments (Atom)
-
Using GPUs in TensorFlow, TensorBoard in notebooks, finding new datasets, & more! (#AskTensorFlow) [Collection] In a special live ep...
-
JavaやC++で作成された具体的なルールに従って動く従来のプログラムと違い、機械学習はデータからルール自体を推測するシステムです。機械学習は具体的にどのようなコードで構成されているでしょうか? 機械学習ゼロからヒーローへの第一部ではそのような疑問に応えるため、ガイドのチャー...
-
#deeplearning #noether #symmetries This video includes an interview with first author Ferran Alet! Encoding inductive biases has been a lo...
-
How to Do PS2 Filter (Tiktok PS2 Filter Tutorial), AI tiktok filter Create your own PS2 Filter photos with this simple guide! 🎮📸 Please...
-
#ai #attention #transformer #deeplearning Transformers are famous for two things: Their superior performance and their insane requirements...
-
K Nearest Neighbors Application - Practical Machine Learning Tutorial with Python p.14 [Collection] In the last part we introduced Class...
-
Machine Learning in Python using Visual Studio | Getting Started Python is a popular programming language. It was created by Guido van Ross...
-
We Talked To Sophia — The AI Robot That Once Said It Would 'Destroy Humans' [Collection] This AI robot once said it wanted to de...
-
Programming R Squared - Practical Machine Learning Tutorial with Python p.11 [Collection] Now that we know what we're looking for, l...
-
#minecraft #neuralnetwork #backpropagation I built an analog neural network in vanilla Minecraft without any mods or command blocks. The n...
No comments:
Post a Comment