Resource of free step by step video how to guides to get you started with machine learning.
Wednesday, June 17, 2020
BYOL: Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (Paper Explained)
Self-supervised representation learning relies on negative samples to keep the encoder from collapsing to trivial solutions. However, this paper shows that negative samples, which are a nuisance to implement, are not necessary for learning good representation, and their algorithm BYOL is able to outperform other baselines using just positive samples. OUTLINE: 0:00 - Intro & Overview 1:10 - Image Representation Learning 3:55 - Self-Supervised Learning 5:35 - Negative Samples 10:50 - BYOL 23:20 - Experiments 30:10 - Conclusion & Broader Impact Paper: https://ift.tt/30XKSds Abstract: We introduce Bootstrap Your Own Latent (BYOL), a new approach to self-supervised image representation learning. BYOL relies on two neural networks, referred to as online and target networks, that interact and learn from each other. From an augmented view of an image, we train the online network to predict the target network representation of the same image under a different augmented view. At the same time, we update the target network with a slow-moving average of the online network. While state-of-the art methods intrinsically rely on negative pairs, BYOL achieves a new state of the art without them. BYOL reaches 74.3% top-1 classification accuracy on ImageNet using the standard linear evaluation protocol with a ResNet-50 architecture and 79.6% with a larger ResNet. We show that BYOL performs on par or better than the current state of the art on both transfer and semi-supervised benchmarks. Authors: Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, Michal Valko Links: YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher Discord: https://ift.tt/3dJpBrR BitChute: https://ift.tt/38iX6OV Minds: https://ift.tt/37igBpB
Subscribe to:
Post Comments (Atom)
-
Using GPUs in TensorFlow, TensorBoard in notebooks, finding new datasets, & more! (#AskTensorFlow) [Collection] In a special live ep...
-
JavaやC++で作成された具体的なルールに従って動く従来のプログラムと違い、機械学習はデータからルール自体を推測するシステムです。機械学習は具体的にどのようなコードで構成されているでしょうか? 機械学習ゼロからヒーローへの第一部ではそのような疑問に応えるため、ガイドのチャー...
-
#deeplearning #noether #symmetries This video includes an interview with first author Ferran Alet! Encoding inductive biases has been a lo...
-
How to Do PS2 Filter (Tiktok PS2 Filter Tutorial), AI tiktok filter Create your own PS2 Filter photos with this simple guide! 🎮📸 Please...
-
#ai #attention #transformer #deeplearning Transformers are famous for two things: Their superior performance and their insane requirements...
-
K Nearest Neighbors Application - Practical Machine Learning Tutorial with Python p.14 [Collection] In the last part we introduced Class...
-
Challenge scenario You were recently hired as a Machine Learning Engineer at a startup movie review website. Your manager has tasked you wit...
-
We Talked To Sophia — The AI Robot That Once Said It Would 'Destroy Humans' [Collection] This AI robot once said it wanted to de...
-
Programming R Squared - Practical Machine Learning Tutorial with Python p.11 [Collection] Now that we know what we're looking for, l...
-
RNN Example in Tensorflow - Deep Learning with Neural Networks 11 [Collection] In this deep learning with TensorFlow tutorial, we cover ...
No comments:
Post a Comment