Sunday, August 2, 2020

Big Bird: Transformers for Longer Sequences (Paper Explained)


#ai #nlp #attention The quadratic resource requirements of the attention mechanism are the main roadblock in scaling up transformers to long sequences. This paper replaces the full quadratic attention mechanism by a combination of random attention, window attention, and global attention. Not only does this allow the processing of longer sequences, translating to state-of-the-art experimental results, but also the paper shows that BigBird comes with theoretical guarantees of universal approximation and turing completeness. OUTLINE: 0:00 - Intro & Overview 1:50 - Quadratic Memory in Full Attention 4:55 - Architecture Overview 6:35 - Random Attention 10:10 - Window Attention 13:45 - Global Attention 15:40 - Architecture Summary 17:10 - Theoretical Result 22:00 - Experimental Parameters 25:35 - Structured Block Computations 29:30 - Recap 31:50 - Experimental Results 34:05 - Conclusion Paper: https://ift.tt/32Za4BA My Video on Attention: https://youtu.be/iDulhoQ2pro My Video on BERT: https://youtu.be/-9evrZnBorM My Video on Longformer: https://youtu.be/_8KNb5iqblE ... and its memory requirements: https://youtu.be/gJR28onlqzs Abstract: Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP. Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to 8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also propose novel applications to genomics data. Authors: Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed Links: YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher Discord: https://ift.tt/3dJpBrR BitChute: https://ift.tt/38iX6OV Minds: https://ift.tt/37igBpB Parler: https://ift.tt/38tQU7C LinkedIn: https://ift.tt/2Zo6XRA If you want to support me, the best thing to do is to share out the content :) If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this): SubscribeStar: https://ift.tt/2DuKOZ3 Patreon: https://ift.tt/390ewRH Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2 Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

No comments:

Post a Comment