Wednesday, June 23, 2021

XCiT: Cross-Covariance Image Transformers (Facebook AI Machine Learning Research Paper Explained)


#xcit #transformer #attentionmechanism After dominating Natural Language Processing, Transformers have taken over Computer Vision recently with the advent of Vision Transformers. However, the attention mechanism's quadratic complexity in the number of tokens means that Transformers do not scale well to high-resolution images. XCiT is a new Transformer architecture, containing XCA, a transposed version of attention, reducing the complexity from quadratic to linear, and at least on image data, it appears to perform on par with other models. What does this mean for the field? Is this even a transformer? What really matters in deep learning? OUTLINE: 0:00 - Intro & Overview 3:45 - Self-Attention vs Cross-Covariance Attention (XCA) 19:55 - Cross-Covariance Image Transformer (XCiT) Architecture 26:00 - Theoretical & Engineering considerations 30:40 - Experimental Results 33:20 - Comments & Conclusion Paper: https://ift.tt/3gPTomx Code: https://ift.tt/3zEu3mL Abstract: Following their success in natural language processing, transformers have recently shown much promise for computer vision. The self-attention operation underlying transformers yields global interactions between all tokens ,i.e. words or image patches, and enables flexible modelling of image data beyond the local interactions of convolutions. This flexibility, however, comes with a quadratic complexity in time and memory, hindering application to long sequences and high-resolution images. We propose a "transposed" version of self-attention that operates across feature channels rather than tokens, where the interactions are based on the cross-covariance matrix between keys and queries. The resulting cross-covariance attention (XCA) has linear complexity in the number of tokens, and allows efficient processing of high-resolution images. Our cross-covariance image transformer (XCiT) is built upon XCA. It combines the accuracy of conventional transformers with the scalability of convolutional architectures. We validate the effectiveness and generality of XCiT by reporting excellent results on multiple vision benchmarks, including image classification and self-supervised feature learning on ImageNet-1k, object detection and instance segmentation on COCO, and semantic segmentation on ADE20k. Authors: Alaaeldin El-Nouby, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze, Armand Joulin, Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, Hervé Jegou Links: TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher Discord: https://ift.tt/3dJpBrR BitChute: https://ift.tt/38iX6OV Minds: https://ift.tt/37igBpB Parler: https://ift.tt/38tQU7C LinkedIn: https://ift.tt/2Zo6XRA BiliBili: https://ift.tt/3mfyjkW If you want to support me, the best thing to do is to share out the content :) If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this): SubscribeStar: https://ift.tt/2DuKOZ3 Patreon: https://ift.tt/390ewRH Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2 Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

No comments:

Post a Comment