Sunday, June 27, 2021

The Dimpled Manifold Model of Adversarial Examples in Machine Learning (Research Paper Explained)


#adversarialexamples #dimpledmanifold #security Adversarial Examples have long been a fascinating topic for many Machine Learning researchers. How can a tiny perturbation cause the neural network to change its output by so much? While many explanations have been proposed over the years, they all appear to fall short. This paper attempts to comprehensively explain the existence of adversarial examples by proposing a view of the classification landscape, which they call the Dimpled Manifold Model, which says that any classifier will adjust its decision boundary to align with the low-dimensional data manifold, and only slightly bend around the data. This potentially explains many phenomena around adversarial examples. Warning: In this video, I disagree. Remember that I'm not an authority, but simply give my own opinions. OUTLINE: 0:00 - Intro & Overview 7:30 - The old mental image of Adversarial Examples 11:25 - The new Dimpled Manifold Hypothesis 22:55 - The Stretchy Feature Model 29:05 - Why do DNNs create Dimpled Manifolds? 38:30 - What can be explained with the new model? 1:00:40 - Experimental evidence for the Dimpled Manifold Model 1:10:25 - Is Goodfellow's claim debunked? 1:13:00 - Conclusion & Comments Paper: https://ift.tt/3qsSO1f My replication code: https://ift.tt/3quYTu1 Goodfellow's Talk: https://youtu.be/CIfsB_EYsVI?t=4280 Abstract: The extreme fragility of deep neural networks when presented with tiny perturbations in their inputs was independently discovered by several research groups in 2013, but in spite of enormous effort these adversarial examples remained a baffling phenomenon with no clear explanation. In this paper we introduce a new conceptual framework (which we call the Dimpled Manifold Model) which provides a simple explanation for why adversarial examples exist, why their perturbations have such tiny norms, why these perturbations look like random noise, and why a network which was adversarially trained with incorrectly labeled images can still correctly classify test images. In the last part of the paper we describe the results of numerous experiments which strongly support this new model, and in particular our assertion that adversarial perturbations are roughly perpendicular to the low dimensional manifold which contains all the training examples. Abstract: Adi Shamir, Odelia Melamed, Oriel BenShmuel Links: TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher Discord: https://ift.tt/3dJpBrR BitChute: https://ift.tt/38iX6OV Minds: https://ift.tt/37igBpB Parler: https://ift.tt/38tQU7C LinkedIn: https://ift.tt/3qcgOFy BiliBili: https://ift.tt/3mfyjkW If you want to support me, the best thing to do is to share out the content :) If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this): SubscribeStar: https://ift.tt/2DuKOZ3 Patreon: https://ift.tt/390ewRH Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2 Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

No comments:

Post a Comment