Resource of free step by step video how to guides to get you started with machine learning.
Thursday, April 23, 2020
Thinking While Moving: Deep Reinforcement Learning with Concurrent Control (Video Analysis)
Classic RL "stops" the world whenever the Agent computes a new action. This paper considers a more realistic scenario where the agent is thinking about the next action to take while still performing the last action. This results in a fascinating way of reformulating Q-learning in continuous time, then introducing concurrency and finally going back to discrete time. https://ift.tt/2xrdLTb Abstract: We study reinforcement learning in settings where sampling an action from the policy must be done concurrently with the time evolution of the controlled system, such as when a robot must decide on the next action while still performing the previous action. Much like a person or an animal, the robot must think and move at the same time, deciding on its next action before the previous one has completed. In order to develop an algorithmic framework for such concurrent control problems, we start with a continuous-time formulation of the Bellman equations, and then discretize them in a way that is aware of system delays. We instantiate this new class of approximate dynamic programming methods via a simple architectural extension to existing value-based deep reinforcement learning algorithms. We evaluate our methods on simulated benchmark tasks and a large-scale robotic grasping task where the robot must "think while moving". Authors: Ted Xiao, Eric Jang, Dmitry Kalashnikov, Sergey Levine, Julian Ibarz, Karol Hausman, Alexander Herzog Links: YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher BitChute: https://ift.tt/38iX6OV Minds: https://ift.tt/37igBpB
Subscribe to:
Post Comments (Atom)
-
Using GPUs in TensorFlow, TensorBoard in notebooks, finding new datasets, & more! (#AskTensorFlow) [Collection] In a special live ep...
-
JavaやC++で作成された具体的なルールに従って動く従来のプログラムと違い、機械学習はデータからルール自体を推測するシステムです。機械学習は具体的にどのようなコードで構成されているでしょうか? 機械学習ゼロからヒーローへの第一部ではそのような疑問に応えるため、ガイドのチャー...
-
#deeplearning #noether #symmetries This video includes an interview with first author Ferran Alet! Encoding inductive biases has been a lo...
-
#ai #attention #transformer #deeplearning Transformers are famous for two things: Their superior performance and their insane requirements...
-
Machine Learning in Python using Visual Studio | Getting Started Python is a popular programming language. It was created by Guido van Ross...
-
K Nearest Neighbors Application - Practical Machine Learning Tutorial with Python p.14 [Collection] In the last part we introduced Class...
-
The video provides an overview of the use of AI and machine learning in education, specifically in the context of building an AI tool for ma...
-
STUMPY is a robust and scalable Python library for computing a matrix profile, which can create valuable insights about our time series. STU...
-
Linear Algebra Tutorial on the Determinant of a Matrix 🤖Welcome to our Linear Algebra for AI tutorial! This tutorial is designed for both...
-
📺For more content like this, follow me on: 🔗YouTube: https://rb.gy/x3zdss 🔗Instagram: https://rb.gy/2exe75 🔗Linkedin: https://rb.gy/iuhd...
No comments:
Post a Comment