Resource of free step by step video how to guides to get you started with machine learning.
Monday, April 13, 2020
The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
Stunning evidence for the hypothesis that neural networks work so well because their random initialization almost certainly contains a nearly optimal sub-network that is responsible for most of the final performance. https://ift.tt/2HAmQIJ Abstract: Neural network pruning techniques can reduce the parameter counts of trained networks by over 90%, decreasing storage requirements and improving computational performance of inference without compromising accuracy. However, contemporary experience is that the sparse architectures produced by pruning are difficult to train from the start, which would similarly improve training performance. We find that a standard pruning technique naturally uncovers subnetworks whose initializations made them capable of training effectively. Based on these results, we articulate the "lottery ticket hypothesis:" dense, randomly-initialized, feed-forward networks contain subnetworks ("winning tickets") that - when trained in isolation - reach test accuracy comparable to the original network in a similar number of iterations. The winning tickets we find have won the initialization lottery: their connections have initial weights that make training particularly effective. We present an algorithm to identify winning tickets and a series of experiments that support the lottery ticket hypothesis and the importance of these fortuitous initializations. We consistently find winning tickets that are less than 10-20% of the size of several fully-connected and convolutional feed-forward architectures for MNIST and CIFAR10. Above this size, the winning tickets that we find learn faster than the original network and reach higher test accuracy. Authors: Jonathan Frankle, Michael Carbin Links: YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher BitChute: https://ift.tt/38iX6OV Minds: https://ift.tt/37igBpB
Subscribe to:
Post Comments (Atom)
-
Using GPUs in TensorFlow, TensorBoard in notebooks, finding new datasets, & more! (#AskTensorFlow) [Collection] In a special live ep...
-
JavaやC++で作成された具体的なルールに従って動く従来のプログラムと違い、機械学習はデータからルール自体を推測するシステムです。機械学習は具体的にどのようなコードで構成されているでしょうか? 機械学習ゼロからヒーローへの第一部ではそのような疑問に応えるため、ガイドのチャー...
-
#deeplearning #noether #symmetries This video includes an interview with first author Ferran Alet! Encoding inductive biases has been a lo...
-
How to Do PS2 Filter (Tiktok PS2 Filter Tutorial), AI tiktok filter Create your own PS2 Filter photos with this simple guide! 🎮📸 Please...
-
#ai #attention #transformer #deeplearning Transformers are famous for two things: Their superior performance and their insane requirements...
-
K Nearest Neighbors Application - Practical Machine Learning Tutorial with Python p.14 [Collection] In the last part we introduced Class...
-
Machine Learning in Python using Visual Studio | Getting Started Python is a popular programming language. It was created by Guido van Ross...
-
We Talked To Sophia — The AI Robot That Once Said It Would 'Destroy Humans' [Collection] This AI robot once said it wanted to de...
-
Programming R Squared - Practical Machine Learning Tutorial with Python p.11 [Collection] Now that we know what we're looking for, l...
-
#minecraft #neuralnetwork #backpropagation I built an analog neural network in vanilla Minecraft without any mods or command blocks. The n...
No comments:
Post a Comment