Resource of free step by step video how to guides to get you started with machine learning.
Friday, April 19, 2024
Build an AI/ML Football Analysis system with YOLO, OpenCV, and Python
In this video, you'll learn how to use machine learning, computer vision and deep learning to create a football analysis system. This project utilizes YOlO a state of the art object detector to detect the players, referees and footballs. It also utilizes trackers to track those object across frames. We also train our own object detector to enhance the output of the state-of-the-art models. Additionally, we will assign players to teams based on the colors of their t-shirts using Kmeans for pixel segmentation and clustering. We will also use optical flow to measure camera movement between frames, enabling us to accurately measure a player's movement. Furthermore, we will implement perspective transformation to represent the scene's depth and perspective, allowing us to measure a player's movement in meters rather than pixels. Finally, we will calculate a player's speed and the distance covered. This project covers various concepts and addresses real-world problems, making it suitable for both beginners and experienced machine learning engineers. In this video you will learn how to: 1. Use ultralytics and YOLOv8 to detect objects in images and videos. 2. Fine tune and train your own YOLO on your own custom dataset. 3. Use KMeans to cluster pixles and segment players from the background to get the t-shirt color accurately. 4. Use optical flow to measure the camera movement. 5. Use CV2's (opencv) perspective transformation to represent the scene's depth and perspective. 6. Measure player's speed and distance covered in the image. Datasets: kaggle Dataset: https://www.kaggle.com/competitions/dfl-bundesliga-data-shootout/data?select=clips Robowflow Football Dataset: https://universe.roboflow.com/roboflow-jvuqo/football-players-detection-3zvbc/dataset/1 Github Link: https://github.com/abdullahtarek/football_analysis 🔑 TIMESTAMPS ================================ 0:00 - Introduction 1:19 - Object detection (YOLO) and tracking 1:55:30 - Player color assignment 2:32:00 - Ball interpolation 3:06:25 - Camera movement estimator 3:41:50 - Perspective Transformer 4:05:40 - Speed and distance Estimator
Subscribe to:
Post Comments (Atom)
-
JavaやC++で作成された具体的なルールに従って動く従来のプログラムと違い、機械学習はデータからルール自体を推測するシステムです。機械学習は具体的にどのようなコードで構成されているでしょうか? 機械学習ゼロからヒーローへの第一部ではそのような疑問に応えるため、ガイドのチャー...
-
Using GPUs in TensorFlow, TensorBoard in notebooks, finding new datasets, & more! (#AskTensorFlow) [Collection] In a special live ep...
-
#minecraft #neuralnetwork #backpropagation I built an analog neural network in vanilla Minecraft without any mods or command blocks. The n...
-
Using More Data - Deep Learning with Neural Networks and TensorFlow part 8 [Collection] Welcome to part eight of the Deep Learning with ...
-
Linear Algebra Tutorial on the Determinant of a Matrix 🤖Welcome to our Linear Algebra for AI tutorial! This tutorial is designed for both...
-
STUMPY is a robust and scalable Python library for computing a matrix profile, which can create valuable insights about our time series. STU...
-
❤️ Check out Fully Connected by Weights & Biases: https://wandb.me/papers 📝 The paper "Alias-Free GAN" is available here: h...
-
Why are humans so good at video games? Maybe it's because a lot of games are designed with humans in mind. What happens if we change t...
-
Visual scenes are often comprised of sets of independent objects. Yet, current vision models make no assumptions about the nature of the p...
-
#ai #attention #transformer #deeplearning Transformers are famous for two things: Their superior performance and their insane requirements...
No comments:
Post a Comment