Saturday, November 20, 2021

Learning Rate Grafting: Transferability of Optimizer Tuning (Machine Learning Research Paper Reivew)


#grafting #adam #sgd The last years in deep learning research have given rise to a plethora of different optimization algorithms, such as SGD, AdaGrad, Adam, LARS, LAMB, etc. which all claim to have their special peculiarities and advantages. In general, all algorithms modify two major things: The (implicit) learning rate schedule, and a correction to the gradient direction. This paper introduces grafting, which allows to transfer the induced learning rate schedule of one optimizer to another one. In that, the paper shows that much of the benefits of adaptive methods (e.g. Adam) are actually due to this schedule, and not necessarily to the gradient direction correction. Grafting allows for more fundamental research into differences and commonalities between optimizers, and a derived version of it makes it possible to computes static learning rate corrections for SGD, which potentially allows for large savings of GPU memory. OUTLINE 0:00 - Rant about Reviewer #2 6:25 - Intro & Overview 12:25 - Adaptive Optimization Methods 20:15 - Grafting Algorithm 26:45 - Experimental Results 31:35 - Static Transfer of Learning Rate Ratios 35:25 - Conclusion & Discussion Paper (OpenReview): https://ift.tt/30IA84C Old Paper (Arxiv): https://ift.tt/3HFueT2 Our Discord: https://ift.tt/3dJpBrR Abstract: In the empirical science of training large neural networks, the learning rate schedule is a notoriously challenging-to-tune hyperparameter, which can depend on all other properties (architecture, optimizer, batch size, dataset, regularization, ...) of the problem. In this work, we probe the entanglements between the optimizer and the learning rate schedule. We propose the technique of optimizer grafting, which allows for the transfer of the overall implicit step size schedule from a tuned optimizer to a new optimizer, preserving empirical performance. This provides a robust plug-and-play baseline for optimizer comparisons, leading to reductions to the computational cost of optimizer hyperparameter search. Using grafting, we discover a non-adaptive learning rate correction to SGD which allows it to train a BERT model to state-of-the-art performance. Besides providing a resource-saving tool for practitioners, the invariances discovered via grafting shed light on the successes and failure modes of optimizers in deep learning. Authors: Anonymous (Under Review) Links: TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher Discord: https://ift.tt/3dJpBrR BitChute: https://ift.tt/38iX6OV LinkedIn: https://ift.tt/3qcgOFy BiliBili: https://ift.tt/3nlqFZS If you want to support me, the best thing to do is to share out the content :) If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this): SubscribeStar: https://ift.tt/2DuKOZ3 Patreon: https://ift.tt/390ewRH Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2 Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

No comments:

Post a Comment