Wednesday, December 16, 2020

ReBeL - Combining Deep Reinforcement Learning and Search for Imperfect-Information Games (Explained)


#ai #technology #poker This paper does for Poker what AlphaZero has done for Chess & Go. The combination of Self-Play Reinforcement Learning and Tree Search has had tremendous success in perfect-information games, but transferring such techniques to imperfect information games is a hard problem. Not only does ReBeL solve this problem, but it provably converges to a Nash Equilibrium and delivers a superhuman Heads Up No-Limit Hold'em bot with very little domain knowledge. OUTLINE: 0:00 - Intro & Overview 3:20 - Rock, Paper, and Double Scissor 10:00 - AlphaZero Tree Search 18:30 - Notation Setup: Infostates & Nash Equilibria 31:45 - One Card Poker: Introducing Belief Representations 45:00 - Solving Games in Belief Representation 55:20 - The ReBeL Algorithm 1:04:00 - Theory & Experiment Results 1:07:00 - Broader Impact 1:10:20 - High-Level Summary Paper: https://ift.tt/2P73X5O Code: https://ift.tt/2BocTR8 Blog: https://ift.tt/36AgHLW ERRATA: As someone last video pointed out: This is not the best Poker algorithm, but the best one that uses very little expert knowledge. Abstract: The combination of deep reinforcement learning and search at both training and test time is a powerful paradigm that has led to a number of successes in single-agent settings and perfect-information games, best exemplified by AlphaZero. However, prior algorithms of this form cannot cope with imperfect-information games. This paper presents ReBeL, a general framework for self-play reinforcement learning and search that provably converges to a Nash equilibrium in any two-player zero-sum game. In the simpler setting of perfect-information games, ReBeL reduces to an algorithm similar to AlphaZero. Results in two different imperfect-information games show ReBeL converges to an approximate Nash equilibrium. We also show ReBeL achieves superhuman performance in heads-up no-limit Texas hold'em poker, while using far less domain knowledge than any prior poker AI. Authors: Noam Brown, Anton Bakhtin, Adam Lerer, Qucheng Gong Links: YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher Discord: https://ift.tt/3dJpBrR BitChute: https://ift.tt/38iX6OV Minds: https://ift.tt/37igBpB Parler: https://ift.tt/38tQU7C LinkedIn: https://ift.tt/2Zo6XRA If you want to support me, the best thing to do is to share out the content :) If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this): SubscribeStar: https://ift.tt/2DuKOZ3 Patreon: https://ift.tt/390ewRH Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2 Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

No comments:

Post a Comment