Resource of free step by step video how to guides to get you started with machine learning.
Sunday, May 3, 2020
I talk to the new Facebook Blender Chatbot
This is what a 9 Billion parameter transformer can do. I take a look at FAIR's new paper "Recipes for building an open-domain chatbot" and try out their chatbot live! Jump to 3:00 to see the chatbot in action. Paper: https://ift.tt/3aSrjEY Blog: https://ift.tt/2Yk9U5i Code: https://ift.tt/3aNdEPv Abstract: Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to their partners, and displaying knowledge, empathy and personality appropriately, while maintaining a consistent persona. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter models, and make our models and code publicly available under the collective name Blender. Human evaluations show our best models are superior to existing approaches in multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models. Authors: Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston Links: YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher BitChute: https://ift.tt/38iX6OV Minds: https://ift.tt/37igBpB
Subscribe to:
Post Comments (Atom)
-
Using GPUs in TensorFlow, TensorBoard in notebooks, finding new datasets, & more! (#AskTensorFlow) [Collection] In a special live ep...
-
JavaやC++で作成された具体的なルールに従って動く従来のプログラムと違い、機械学習はデータからルール自体を推測するシステムです。機械学習は具体的にどのようなコードで構成されているでしょうか? 機械学習ゼロからヒーローへの第一部ではそのような疑問に応えるため、ガイドのチャー...
-
#deeplearning #noether #symmetries This video includes an interview with first author Ferran Alet! Encoding inductive biases has been a lo...
-
How to Do PS2 Filter (Tiktok PS2 Filter Tutorial), AI tiktok filter Create your own PS2 Filter photos with this simple guide! 🎮📸 Please...
-
#ai #attention #transformer #deeplearning Transformers are famous for two things: Their superior performance and their insane requirements...
-
K Nearest Neighbors Application - Practical Machine Learning Tutorial with Python p.14 [Collection] In the last part we introduced Class...
-
Machine Learning in Python using Visual Studio | Getting Started Python is a popular programming language. It was created by Guido van Ross...
-
We Talked To Sophia — The AI Robot That Once Said It Would 'Destroy Humans' [Collection] This AI robot once said it wanted to de...
-
Programming R Squared - Practical Machine Learning Tutorial with Python p.11 [Collection] Now that we know what we're looking for, l...
-
#minecraft #neuralnetwork #backpropagation I built an analog neural network in vanilla Minecraft without any mods or command blocks. The n...
No comments:
Post a Comment