Resource of free step by step video how to guides to get you started with machine learning.
Sunday, May 3, 2020
I talk to the new Facebook Blender Chatbot
This is what a 9 Billion parameter transformer can do. I take a look at FAIR's new paper "Recipes for building an open-domain chatbot" and try out their chatbot live! Jump to 3:00 to see the chatbot in action. Paper: https://ift.tt/3aSrjEY Blog: https://ift.tt/2Yk9U5i Code: https://ift.tt/3aNdEPv Abstract: Building open-domain chatbots is a challenging area for machine learning research. While prior work has shown that scaling neural models in the number of parameters and the size of the data they are trained on gives improved results, we show that other ingredients are important for a high-performing chatbot. Good conversation requires a number of skills that an expert conversationalist blends in a seamless way: providing engaging talking points and listening to their partners, and displaying knowledge, empathy and personality appropriately, while maintaining a consistent persona. We show that large scale models can learn these skills when given appropriate training data and choice of generation strategy. We build variants of these recipes with 90M, 2.7B and 9.4B parameter models, and make our models and code publicly available under the collective name Blender. Human evaluations show our best models are superior to existing approaches in multi-turn dialogue in terms of engagingness and humanness measurements. We then discuss the limitations of this work by analyzing failure cases of our models. Authors: Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston Links: YouTube: https://www.youtube.com/c/yannickilcher Twitter: https://twitter.com/ykilcher BitChute: https://ift.tt/38iX6OV Minds: https://ift.tt/37igBpB
Subscribe to:
Post Comments (Atom)
-
Using GPUs in TensorFlow, TensorBoard in notebooks, finding new datasets, & more! (#AskTensorFlow) [Collection] In a special live ep...
-
JavaやC++で作成された具体的なルールに従って動く従来のプログラムと違い、機械学習はデータからルール自体を推測するシステムです。機械学習は具体的にどのようなコードで構成されているでしょうか? 機械学習ゼロからヒーローへの第一部ではそのような疑問に応えるため、ガイドのチャー...
-
#deeplearning #noether #symmetries This video includes an interview with first author Ferran Alet! Encoding inductive biases has been a lo...
-
#ai #attention #transformer #deeplearning Transformers are famous for two things: Their superior performance and their insane requirements...
-
Machine Learning in Python using Visual Studio | Getting Started Python is a popular programming language. It was created by Guido van Ross...
-
The video provides an overview of the use of AI and machine learning in education, specifically in the context of building an AI tool for ma...
-
K Nearest Neighbors Application - Practical Machine Learning Tutorial with Python p.14 [Collection] In the last part we introduced Class...
-
STUMPY is a robust and scalable Python library for computing a matrix profile, which can create valuable insights about our time series. STU...
-
Linear Algebra Tutorial on the Determinant of a Matrix 🤖Welcome to our Linear Algebra for AI tutorial! This tutorial is designed for both...
-
📺For more content like this, follow me on: 🔗YouTube: https://rb.gy/x3zdss 🔗Instagram: https://rb.gy/2exe75 🔗Linkedin: https://rb.gy/iuhd...
No comments:
Post a Comment