Wednesday, February 12, 2020

Growing Neural Cellular Automata


The Game of Life on steroids! This model learns to grow complex patterns in an entirely local way. Each cell is trained to listen to its neighbors and update itself in a way such that, collectively, an overall goal is reached. Fascinating and interactive! https://ift.tt/2ShegXn https://ift.tt/1iAEhpS Abstract: Most multicellular organisms begin their life as a single egg cell - a single cell whose progeny reliably self-assemble into highly complex anatomies with many organs and tissues in precisely the same arrangement each time. The ability to build their own bodies is probably the most fundamental skill every living creature possesses. Morphogenesis (the process of an organism’s shape development) is one of the most striking examples of a phenomenon called self-organisation. Cells, the tiny building blocks of bodies, communicate with their neighbors to decide the shape of organs and body plans, where to grow each organ, how to interconnect them, and when to eventually stop. Understanding the interplay of the emergence of complex outcomes from simple rules and homeostatic 1 feedback loops is an active area of research. What is clear is that evolution has learned to exploit the laws of physics and computation to implement the highly robust morphogenetic software that runs on genome-encoded cellular hardware. This process is extremely robust to perturbations. Even when the organism is fully developed, some species still have the capability to repair damage - a process known as regeneration. Some creatures, such as salamanders, can fully regenerate vital organs, limbs, eyes, or even parts of the brain! Morphogenesis is a surprisingly adaptive process. Sometimes even a very atypical development process can result in a viable organism - for example, when an early mammalian embryo is cut in two, each half will form a complete individual - monozygotic twins! The biggest puzzle in this field is the question of how the cell collective knows what to build and when to stop. The sciences of genomics and stem cell biology are only part of the puzzle, as they explain the distribution of specific components in each cell, and the establishment of different types of cells. While we know of many genes that are required for the process of regeneration, we still do not know the algorithm that is sufficient for cells to know how to build or remodel complex organs to a very specific anatomical end-goal. Thus, one major lynch-pin of future work in biomedicine is the discovery of the process by which large-scale anatomy is specified within cell collectives, and how we can rewrite this information to have rational control of growth and form. It is also becoming clear that the software of life possesses numerous modules or subroutines, such as “build an eye here”, which can be activated with simple signal triggers. Discovery of such subroutines and a mapping out of the developmental logic is a new field at the intersection of developmental biology and computer science. An important next step is to try to formulate computational models of this process, both to enrich the conceptual toolkit of biologists and to help translate the discoveries of biology into better robotics and computational technology. Imagine if we could design systems of the same plasticity and robustness as biological life: structures and machines that could grow and repair themselves. Such technology would transform the current efforts in regenerative medicine, where scientists and clinicians seek to discover the inputs or stimuli that could cause cells in the body to build structures on demand as needed. To help crack the puzzle of the morphogenetic code, and also exploit the insights of biology to create self-repairing systems in real life, we try to replicate some of the desired properties in an in silico experiment. Authors: Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, Michael Levin

No comments:

Post a Comment